CabWire World Conference 2011
Dusseldorf, 7th – 8th of Nov 2011

Production of PV Ribbon for Photovoltaic Solar Panels:
Overview of Product Specifications and Comparison of Production Processes

Authors:
Igor Rogelj, Commercial Director, Plasmait GmbH (Presenter)
Peter Ziger, Technical Director, Plasmait GmbH
Primoz Eiselt, MD, Plasmait GmbH
Agenda

• Introduction: What is PV Ribbon?
• PV Ribbon Market and Market Dynamics
• PV Ribbon Specifications & Requirements
• Alternative PV Ribbon Production Processes
 – Annealing
 – Tinning
• PlasmaPREPLATE Tinning vs. Traditional Process
What is PV Ribbon?

- **Interconnect/Tabbing Ribbon**
 Interconnect ribbon is a hot dip tinned copper conductor installed in photovoltaic/solar panels. The interconnect ribbon is soldered directly onto silicon crystal to interconnect solar cells in a solar panel. The interconnect ribbon carries the current generated in solar cells to the PV bus bar.

- **PV Bus Bar**
 PV bus bar is a hot dip tinned copper conductor installed in solar panels. PV bus bar carries electric current from interconnect ribbons to the junction box.
Industry Outlook: PV Market Demand

Demand growth rate: 20% - 30% per annum
Source: Global Market Outlook for PV Industry Until 2014, EPIA

EU will remain the largest buyer of PV products
PV Ribbon Industry Dynamics

SOLAR PANEL MARKET PLACE & PV RIBBON REQUIREMENTS:

- Over **300 manufacturers** of solar panel worldwide
- Solar Panel market is **fragmented market place in consolidation**
- **Electronics & semiconductor companies** are moving into solar market
- **Fast growing industry** with average annual growth rates of 30%+
- Many different types of panels & cells => **many different types of PV ribbons**
- Innovation & new cell & panel design => **changing PV ribbon specifications**
- Constant price pressure on solar panel => **pressure on PV ribbon pricing**
- Ever more demanding PV ribbon specifications:
 - Ever thinner cells => ever softer wire, particularly Yield Strength
 - 3 ribbons per cell instead of 2 => smaller ribbons & larger output required
 - More automated panel production & soldering => ever smaller PV ribbon tolerances
Market Drivers for a PV Ribbon Supplier

- **Changing product specifications** with new PV ribbon products
- Speed of **product development** and **flexible specification range** is key
- PV ribbon is a key component to ensure panel **efficiency and durability**
- Quality PV ribbon reduces **stringer downtime and scrap rate on stringer**
- Cost of PV ribbon is **2% - 4% of total cost** of solar panel
- Panel manufacturer is prepared to **pay for quality** ribbon

=> **premium price for quality ribbon**

=> **quality of PV ribbon & tolerances are getting ever more important**

- **First standards for PV ribbon** have just been introduced in Aug11
- PV ribbon production & soldering **processes have not matured yet**
PV Ribbon Product Range

- **PV Ribbon size range:**
 - PV Bus Bar: width [3mm – 6mm] x thickness [0.2mm – 0.5mm]
 - Interconnect Ribbon: width [1mm – 3mm] x thickness [0.08mm – 0.2mm]
 - **No standardisation yet on ribbon dimensions**

- **Spool on types on tinning line payoff / rolling mill takeup:**
 - Various spools sizes: 50kg – 600kg
 - Typical spool types: K355, DWF500, DM630

- **Packing options:**
 - Various spools sizes: 1kg – 22kg
 - Typical spool types: Europe: DIN K125, K160, K200, K250 / Asia: P4, P10
 - **No standardisation yet on packing options**
Copper and Solder Specifications

- **Conductor material**: ETP, DIP Form, or OFC (CD-110, CD-101, CD-102)
- **Lead free solder**: Sn 100
- **Lead containing solder**: SnPb 60/40
- **Silver containing solder**: SnAg 96.5/3.5; SnAgCu 96.5/3.0/0.5
- **Lead & silver containing solder**: SnPbAg 62/36/2
- **Low Temperature solder**: BiSn 57/43; BiSnAg 57.7/42/0.3
- **No standardization yet on copper and solder specifications**
Solder Coating Specifications

- Solder coat thickness range: 10 – 40micron +/- 10% - 30%
- Typical solder coat thickness: 20 micron +/- 4micron
- Thickness measuring devices:
 - **X-Ray**: offline one-side thickness measurement
 - **Micrometer**: offline two-side thickness measurement
 - **Laser**: inline two-side thickness measurement
- No standardization yet on solder coating specifications
Mechanical Properties of PV Ribbon

- Tensile Strength: < 250N/mm²
- Elongation: > 20%
- Camber: < 0.5% [5mm on 1m length]
- Yield Strength (Rp0.2%):
 - Hard / semi hard > 120MPa
 - Soft < 80MPa
 - Super soft < 65MPa
WARPAGE is a result of cooling of solar cell after soldering/stringing

Ever thinner solar cells require ever lower YS (Rp0.2%)

- **5 year ago**: 300µm thick Si solar cell => YS < 130MPa
- **Today**: 160-180µm thick Si solar cell => YS < 80MPa
- **Tomorrow**: trend to thinner Si solar cell => YS < 65MPa

Bare copper ribbon thickness should be used for YS Rp0.2% measurement!
CRITICAL PARAMETER: ELONGATION

Elongation: > 20% (as high as possible)

- Continuous temperature fluctuations during the lifetime of solar panel put solder joints to the test for the duration of the panel lifespan (average 25 years)

- PV ribbon breakages may occur due to stretching/tension along the ribbons

- Sufficient elongation allows ribbon stretching to minimise joint breakages between the interconnect ribbon and bus bar on the edge of the solar panel.
CRITICAL PARAMETER: CAMBER

- Production of solar panels has become fully-automated with increasing stringing speeds

- High-output fully-automated stringers require low camber to minimise down-time and scrap

TODAY: Target Camber < 5mm in 1m

TOMORROW: Target Camber < 3mm in 1m
Annealing Techniques for PV Ribbon Production

- **Resistive annealing**
 - √ Low cost, high output annealing for in-line operation with rolling
 - X Mechanical properties cannot be achieved (e.g., Yield Strength)
 - X Surface damaged by sparks and rolling lubricant deposits get burned onto the ribbon

- **Bell annealing**
 - √ High output but long time of annealing-cooling cycles
 - √ YS can be as low as 50MPa but with low elongation
 - X High investment cost – controlled atmosphere bell annealer
 - X Spots on surface due to rolling lubricant deposits – if no pre-cleaning
 - X Sticking of ribbon on spool due to high temperature/long annealing time

- **Strand (tube) furnace annealing**
 - √ Softness is achievable
 - X Too slow to run inline with rolling => multi-line setup & expensive material manipulation
 - X Multi-line system = multiple takeups & payoffs
 - X High production and maintenance costs
Annealing Techniques for PV Ribbon Production

Inductive annealing
- √ High output solution running inline with rolling
- X Limited control over mechanical properties due to inaccurate load matching (YS tolerance)
- X High softness PV ribbon not possible (Yield Strength)
- X Surface deposits get burned onto the ribbon resulting in compromised surface quality

Plasma annealing
- √ High output solution running inline with rolling mill or in line with tinning
- √ Superior surface cleanliness (annealing + degreasing + de-oxidation + surface activation)
- √ Contact-less process = no contact with ribbon
- √ Superior mechanical properties [YS Rp0.2% min. 50N/mm²; Elongation max. 40%]
- √ Accurate control of mechanical properties through power control
- √ Contact-less process = virtually no wear parts + low maintenance and process costs
- X High capital investment, but surface cleaning included with annealing
Traditional Process vs. PlasmaPREPLATE Tinning

Traditional Process of Hot Dip Tinning

STEP 1:
Payoff → Rolling → Annealing → Takeup

STEP 2:
Payoff → Pickling → Rinsing → Fluxing → Hot Dip → Takeup

PlasmaPREPLATE in Hot Dip Tinning Process

STEP 1:
Payoff → Rolling → Takeup

STEP 2:
Payoff → PlasmaPREPLATE → Hot Dip → Takeup
Traditional Process for PV Ribbon Production

ROLLING
• High speed rolling, off-line from tinning

TINNING
• Multi-line tinning with chemical pre-cleaning: 2, 3 or 6 lines in parallel
• Tinning speed: 5m/min – 30m/min, subject to product and softness spec.
• Complexity of process control in multi-line process due to interference
• Acid, rinsing, fluxing necessary prior to tinning
• Solder waste due to oxidation and flux contamination in bath
• Scrap rate issues:
 – Wet processes difficult to control inline
 – Mechanical properties are difficult to control due to soft ribbon manipulation
 – Tin coat thickness tolerance difficult to control due to low speed wiping
• Working capital locked on every line (the cost of copper & tin on each line)
PlasmaPREPLATE Process for PV Ribbon

ROLLING
- High speed rolling, off-line from tinning
OR
- Small rolling mill inline with tinning (interconnect ribbon only)

PlasmaPREPLATE TINNING
- Single line tinning without chemical cleaning and no fluxing
- Tinning speed: up to 150m/min, subject to product and softness
- Production utilisation rate of up to 95%
- Finished product packing for full range of spool and disc types
- Acid-free and flux-free, environment-friendly production
- Computer control over production parameters of annealing, tinning, wiping
- Computer based inline quality control
- Small footprint
PlasmaPREPLATE Tinning Line for PV Ribbon Production

Payoff > PlasmaPREPLATE (annealing & surface preparation) > Tinning > Takeup

October 12
PV Ribbon Product Quality
Benefits of PlasmaPREPLATE vs. Traditional Process

• Superior and consistent product quality:
 – Super soft wire with YS down to 50MPa & high level of elongation over 30%
 – Smooth consistent and shiny tin coat with lower thickness tolerance
 – Flux & chemical-free tinning allows better process control and finished product quality

• Rapid product development for new products with various specifications => sales

• Computer enabled, inline product quality control

• Computer assisted production know-how management

• Production Recipe Database

• Inline laser coating thickness measurement system

• Alarm system and surface fault record database
Cost of PV ribbon Production
Benefits of PlasmaPREPLATE vs. Traditional Process

- High production speed – **up to 150m/min**
- High production speed, production automation & process control = **less man power**
- Increased production **uptime**
- **Dry surface preparation** (no rinsing, no drying, no waste disposal, no water treatment)
- Considerably **less tin waste** – no flux contamination of tin
- **Quick changeover** between different product ranges & specifications
- Low **operation costs** (lower power, cost of chemicals and their manipulation)
- Low **maintenance costs**
- Small **footprint**
- Computer enabled basic **maintenance alerts**
- **Inline quality control** = improved product quality = less scrap and returns